
Science Division

ANL-88-3

Mathematics and Computer POftSblG Implementation
Science Division nf Q Qanpnp FYnnnpntial

Mathematics and Computer Ul d Uü] IGI lü CAHUi ICi mcu

Science Division FUilCtiOn in ADA
Mathematics and Computer

by Ping Tak Peter Tang

WM«f9 n9

Argonne National Laboratory, Argonne, Illinois 60439
'Q\^ \ operated by The University of Chicago

for the United States Department of Energy under Contract W-31-109-Eng-38

PLEASE RETURN TO:

BMD TECHNICAL INFORMATION CENT -
BALLISTIC MISSILE DEFENSE ORGANIZATION

7100 DEFENSE PENTAGON
WASHINGTON D.C. 20301-7100

(J 0124-7

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency
thereof.

Printed in the United States of America
Available from

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche Copy: A01

Distribution Category:
Mathematics and Computers
(UC-32)

ANL-88-3

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

PORTABLE IMPLEMENTATION OF A GENERIC
EXPONENTIAL FUNCTION IN ADA

Ping Tak Peter Tang

Mathematics and Computer Science Division

February 1988

This work was supported by the Strategic Defense Initiative Organization, Office of the Secretary of Defense,
under WPD B411.

Contents

Abstract 1

1 Introduction 1

2 Generic Packages and Range Constraints 2
2.1 Problem 2
2.2 Solution 3

3 Accurate Implementation with Extra-Precise Arithmetic 4
3.1 Two Methods 4
3.2 Cost 6
3.3 Alternative 6

4 Algorithm 6

5 Implementation Details 7
5.1 Assumptions about Floating-Point Arithmetic 7
5.2 Implementation 8

6 Error Analysis with Ada's Model 10
6.1 Classification of Errors 12
6.2 Error in Reduction 12
6.3 Error in Approximation 13
6.4 Rounding Errors . 14
6.5 Overall Error 16
6.6 Remarks 17

7 Test Results 17

8 Conclusion and Future Work 18

Acknowledgments 19

Appendix 20

References 30

in

Portable Implementation of a Generic
Exponential Function in Ada

by

Ping Tak Peter Tang

Abstract

By presenting a provably accurate implementation of the exponential function, we illus-
trate that an accurate and portable elementary-function library can be implemented in
Ada.

1 Introduction

Since July of 1986, the SIGAda Numerics Working Group has been working on a speci-
fication for the elementary transcendental functions for Ada. The specification includes
requirements on accuracies for the various functions. Our interest lies not only in for-
mulating the specification, but also in demonstrating portable implementations that are
reasonably accurate and efficient. One of the goals is to illustrate that the proposed
specification is well formulated, by implementing an elementary-function library that is
both portable and provably accurate to well within the requirements of the specification.

This is a report on the exponential function that we implemented in conformance
with the specification dated December 6, 1987. (Although the specification is still evolv-
ing, we expect further changes to be minor.) The next two sections discuss two different
problems related to the construction of portable generic libraries. Solutions to the prob-
lems are also presented. These solutions will be applicable not only to the exponential
function but also to the other functions. Sections 4 and 5 present the algorithm and the
implementation details for the exponential function. Section 6 analyzes the implemen-
tation and provides an error bound for the computed result. Section 7 presents some
results obtained from a number of tests performed on the function. Finally, Section 8
discusses further work to be pursued. The Appendix lists the complete source code.

2 Generic Packages and Range Constraints

2.1 Problem

The proposed specification requires that the library of elementary functions be generic
and provide an accuracy comparable to the base type of the generic actual type. What
type, then, should be used inside the generic package for computations? The generic
actual type is unsuitable because it may have a range constraint that can be violated
during intermediate calculations in the package. This violation would then cause a
constraint error to be raised even if the final result would have been perfectly acceptable,
had the exception not occurred.

It is clear that a constraint-free type with a precision comparable to that of the
base type of the generic actual type must be used within the generic package body. Let
W0RKING_FL0AT be such an ideal type, and let FLOAT-TYPE be the generic formal type.
How can WORKING-FLOAT be declared? One may try declaring

type WORKING-FLOAT is digits FLOAT-TYPE'BASE'DIGITS.

Unfortunately, this does not work because FLOAT-TYPE'BASE'DIGITS is a nonstatic ex-
pression. A workable solution, but impractical for portable implementations, would be
to perform a case analysis as follows:

case FLOAT-TYPE'BASE'DIGITS is
when 1 =>

declare

type WORKING-FLOAT is digits 1;
begin

— complete calculation of exp in this case

— approximation accurate to at least i digit
end;

when 2 ->
declare

type WORKING-FLOAT is digits 2;
begin

— complete calculation of exp in this case

— approximation accurate to at least 2 digits
end;

when SYSTEM.MAX_DIGITS =>
declare

type WORKING-FLOAT is digits SYSTEM.MAX-DIGITS;
begin

— complete calculation of exp in this case

— approximation accurate to at least

— SYSTEM.MAX.DIGITS digits

end;

end case;

For any portable implementation that intends to accommodate systems whose at-
tribute SYSTEM.MAX_DIGITS is 15 or larger, the solution just proposed leads to a huge
code.

2.2 Solution

As a practical solution, we condense the many cases as follows:

case FLOAT.TYPE'BASE'DIGITS is

when 1..6 =>

declare
type WORKING.FLOAT is digits
(6+SYSTEM.MAX.DIGITS - abs(6-SYSTEM.MAX.DIGITS))/2;

— the expression above is MIN(6, SYSTEM.MAX.DIGITS)

begin
— complete calculation of exp in this case

— approximation accurate to at least 6 digits

end;
when 7..IS =>

declare
type WORKING.FLOAT is digits
(15+SYSTEM.MAX_DIGITS - abs(15-SYSTEM.MAX_DIGITS))/2;

begin
— complete calculation of exp in this case

— approximation accurate to at least 15 digits

end;

when 27..33 =>

declare
type WORKING.FLOAT is digits
(33+SYSTEM.MAX.DIGITS - abs(33-SYSTEM.MAX_DIGITS))/2;

begin
— complete calculation of exp in this case
— approximation accurate to at least 33 digits

end;
when others =>
— cannot handle this case

end case;

This method guarantees that

WORKING-FLOAT» DIGITS > FLOAT-TYPE'BASE'DIGITS (1)

always. Furthermore, to avoid using a type that is unnecessarily more accurate, we note
that equality for (1) holds whenever the right boundary of the case coincides with a
predefined type of the machine on which the code runs. Thus, we have chosen the cases
such that on the all the Ada systems that we have experience with,

WORKING-FLOAT'DIGITS = FLOAT-TYPE'BASE'DIGITS (2)

for all possible FLOAT-TYPEs.

3 Accurate Implementation with Extra-Precise Arithmetic

A typical implementation of an elementary function involves three steps: argument re-
duction to a primary interval, approximation of the function on that primary interval,
and reconstruction of the function value. In accurate implementations, it is standard
practice to perform argument reduction and reconstruction in an extra-precise data type.
When such a data type is unavailable, extra precision is simulated in software using the
working-precise data type (cf. [3], [5]). Therefore, an elementary function package fol-
lowing that practice would try to exploit extra-precise data types whenever they are
available, and resort to simulation when they are not.

In principle, a portable generic package is able to detect at elaboration time whether
an extra-precise data type is available, and consequently can ensure that appropriate
actions be taken when the function is invoked later. In practice, however, because of
technicalities in constructing a portable generic package, such an approach will lead to
a huge code jammed with several sets of (otherwise unnecessary) constants used for
argument reduction and reconstruction and with many complicated branches.

Fortunately, there are two practical alternatives to the impractical approach, one
slightly more efficient while the other noticeably more accurate. We have chosen the
latter. In what follows, we describe and compare the two methods, examine the cost of
the method that we adopted, and explain how to switch from the adopted method to
the other.

3.1 Two Methods

In Section 2.2, we described how we could declare the type WORKING-FLOAT that cor-
responds to the same predefined floating type of the generic actual type. Thus, an
acceptably accurate implementation can compute solely in WORKING-FLOAT and perform
simulation of extra precision at critical places. There is an advantage as well as disad-
vantages to this method.

• Advantage:

The cost is minimal. The implementation is no more expensive than an acceptably
accurate implementation need be. The price of using simulation has to be paid
even when the package is not required to be generic or portable.

• Disadvantages:

1. This method leads to a large body of code. The reason is that the three steps
in the implementation — argument reduction, approximation, and reconstruc-
tion — must be included in each of the different cases of W0RKING_FL0ATs (cf.
Section 2.2).

2. When extra precision is available without simulation, this method is less ac-
curate than that of employing the readily available higher-precise arithmetic.
The reason is that, because of the high cost, extra-precision simulation is
done only in a few of the many places where higher precision would enhance
accuracy noticeably.

To overcome the disadvantages, we have taken an approach that uses unsimulated ex-
tra precision whenever it is available. Because of portability and genericity, the only con-
venient extra-precise type is LONGEST-FLOAT, the type with the maximum allowable num-
ber of digits. Moreover, because we cannot determine a priori whether WORKING-FLOAT
leaves us with any extra-precise type, the implementation must simulate extra-precision
operations as well. Let us consider the advantages and disadvantages of this approach.

• Advantages:

1. The resulting code is compact. The reason is that the code for both argument
reduction and reconstruction need appear only once. These two steps compute
solely in LONGEST-FLOAT and work for all possible generic actual types.

2. The accuracy is enhanced in general. When

LONGEST-FLOAT»DIGITS > WORKING-FLOAT'DIGITS,

the result obtained would be more accurate than that obtained from compu-
tations done solely in WORKING-FLOAT, even with the help of extra-precision
simulation.

• Disadvantages:

1. Work is duplicated in this approach. When

LONGEST-FLOAT'DIGITS > WORKING-FLOAT'DIGITS,

the simulation of extra precision is rendered redundant by the use of the type
LONGEST-FLOAT.

2. The approach may be unaffordably inefficient. It is conceivable that in some
systems, operations in LONGEST-FLOAT are extremely inefficient. For example,
it is possible that operations on the H-format (113 significant bits) data types
supported by the VMS operating systems may be implemented in software on
some particular machines.

We have chosen the second approach because of the higher accuracy it offers and the
compact code that results from it. Section 3.2 below shows that the disadvantages
discussed above are insignificant in most cases; and Section 3.3 discusses how the first
approach can be implemented by slight modification of our code (given in the Appendix).

3.2 Cost

How often is work being duplicated in our approach? On systems with only two pre-
defined floating types, duplication occurs only half of the time. In those undesirable
cases, the cost of the unnecessary effort is only approximately five multiplications in
LONGEST-FLOAT. Moreover, operations in LONGEST-FLOAT are efficient whenever they are
implemented in hardware. Consequently, on machines with only two predefined floating
types, both supported in hardware, our implementation is justified. This applies to all
but two Ada systems that we know of.

3.3 Alternative

On systems such as the IBM/370 or VAX under VMS, there are usually three predefined
floating types. If calculations in the widest format are excessively expensive, imple-
mentors can easily incorporate the argument reduction and the reconstruction into the
approximation step of the code (cf. the Appendix). By doing so, all calculations will be
performed in the base type of the generic actual type.

4 Algorithm

The algorithm follows. Implementation details are given in the next section.

Step 1. Filter out the exceptional cases. When the magnitude of the input argument
X is so large that an accurate result cannot be represented in the underlying data
type, the exception ARGUMENT-ERROR should be raised. There are other situations
in which that exception should be raised, and they are stated precisely in the
specification.

Step 2. Reduce the input argument X to [-log2/64,log2/64]. Obtain integers n, m,
and j and machine numbers R^ and R2 such that (up to roundoff)

X = «log 2/32 + (R1+R2),

|Äi + -R2| < log 2/64. Furthermore,

n = Z2-m + j, j = 0,1,...,31.

Because of rounding errors, |Äi + JR2| may exceed log 2/64 by a few units of its last
place, and the calculated value of n may also differ by 1 from the integer closest to
32.X"/log2. The analysis later on will show that implementation is still accurate
despite these rounding errors.

Step 3. Approximate exp(Äi + £2) - 1 by a polynomial p(Ri + R2), where

p(t) = t + axt
2 + a2t

3 + ■•- + ant
n+l.

Step 4. Reconstruct exp(X) by

exp(X) = 2m(2J'/32 + 2j'32p(Ri + R2)).

5 Implementation Details

5.1 Assumptions about Floating-Point Arithmetic

Ada demands that certain behavior of the underlying floating-point arithmetic be sat-
isfied when the operands involved are safe numbers. For example, for safe numbers A
and B, A — B, in the absence of underflow, has to be exact whenever cancellation occurs.
The reason is that, because of cancellation, the difference is a safe number. The same
inference, however, cannot be made if the numbers A and B are merely machine numbers.

In practice, implementations must be able to handle machine-number input and,
ideally, provide an accuracy with respect to the machine precision that is in general
higher than that of the safe numbers. Consequently, our implementation needs to make
certain assumptions about the floating-point data types of the target machines. These
assumptions are related to the exponent width, the arithmetic, and the radix.

The assumptions are as follows:

• Exponent Width: We assume that the number of bits in the exponent field never
exceeds L/3, where L is the actual number of binary bits in the mantissa of the
machine. Otherwise, the accuracy of the final result would degrade as the mag-
nitude of the input argument becomes large. This assumption is built into the
number of bits of the value log 2/32 we have stored in the program.

• Arithmetic: Let A and B be two machine numbers such that

2B > A > B.

Thus, cancellation occurs in A — B.

On binary machines, we assume that the subtraction is exact whenever B has one
(or more) trailing zero bit(s).

On nonbinary machines, we assume that A - B is exact. This assumption requires
in particular that a guard digit be present in the subtraction hardware.

If this assumption on arithmetic is violated, our scheme for argument reduction
may fail to be accurate.

• Radix: We assume that the radix is either 2 (binary) or 16 (hexadecimal). We made
this assumption because on most binary and hexadecimal floating-point arithmetic
that we know of, the previous assumption about arithmetic is satisfied.

All the Ada systems with which we have experience satisfy our assumptions. The
following tabulates those machines1 (cf. [2]).

System
Data
Type Radix 'digits

Mantissa
Length (in bits)

Exponent
Width (in bits)

IBM/ single 16 6 24 7
370 double 16 15 48 7

quad 16 20 96 7
CRAY-1 single 2 13 48 14

double 2 27 98 14
single 2 6 24 8

VAX/ d-format 2 9 56 8
VMS g-format 2 15 53 11

h-format 2 33 113 15
IEEE/ single 2 6 24 8

754 double 2 15 | 53 11

5.2 Implementation

The following notes correspond to the algorithm in the previous section. All computa-
tions are carried out in the order prescribed by the parentheses. In the following discus-
sions, X is the input argument, FLOAT-TYPE is the generic formal type, and LONGEST-FLOAT
is the type declared as digits SYSTEM.MAX_DIGITS.

Step 1. The exceptional cases are as follows:

• Raise ARGUMENT-ERROR if |X| > LARGE-THRESHOLD, where

LARGE-THRESHOLD := 2 * FLOAT-TYPE' SAFE-EMAX * log 2.

^he «digits attributes for IBM/370 quad precision and VAX d-formats are shorter than the mantissa
can offer because the exponent ranges of those data types are limited.

Note that for |X| > LARGE-THRESHOLD,

ex > 2 • FLOAT-TYPE»SAFE-LARGE,

or
eX <-■ FLOAT-TYPE*SAFE-SMALL. - 2

Thus, some arguments that are not filtered out here may still warrant an
exception. The computations in the next three steps will be able to handle
those situations (cf. exceptional handling in the code).

• Return 1.0 + X if |X| < SMALL-THRESHOLD, where

SMALL-THRESHOLD := FLOAT-TYPE'BASE'EPSILON.

Step 2. Let Y := LONGEST-FLOAT(X) be the input argument converted to LONGEST-FLOAT.
To perform the argument reduction accurately, do the following.

• First, calculate N, Hi, and N2 as follows:
N := LONGEST-INTEGER(Y * INV-L);
-- see explanation below on LONGEST-INTEGER
if |N| > 28 then

N2 := N mod 26;
«N2=0,l,...,26-1
Ni := N - N2;

otherwise,
N2 := 0;
Ni := N.

INV-L is the value 32/log 2 represented in LONGEST-FLOAT. The declaration

type LONGEST-INTEGER is range
SYSTEM.MIN.INT..SYSTEM.MAX.INT;

is meant to provide an integer type that would accommodate all the possible
round-to-integer values of Y * INV_L. A better way, however, is to use the
proposed primitive function ([6]) REAL-INT that returns in floating type the
integral value closest to a given real number.

• The reduced argument is represented in two LONGEST-FLOAT variables Ri and
R2. The idea is to represent log 2/32 to extra precision by two LONGEST-FLOAT
numbers Li and L2. The values of Li and L2 are chosen at run time in such a
way that Li + L2 represents log 2/32 to a sufficient number of bits more than
the mantissa length of LONGEST-FLOAT. After Li and L2 are chosen, compute
Ri and R2 as follows:

TMP :=Ni *Li;
if |Y| > |TMP| then

1

Rl := Y - TMP;
otherwise,

Rl := (Y - TMP/2) - TMP/2;
IfN2 ^0, Ri :=Ri -N2*Li;
R2 := -N*L2.

• Finally, calculate M and J by

J := N mod 32; M := (N - J)/32.

Step 3. Let WORKING-FLOAT be the type described in Section 2. The approximation
polynomial is computed by a standard recurrence in WORKING-FLOAT as follows:

:= W0RKING_FL0AT(Ri+R2);

:= R * R * (Ai + R * (A2 + R * (... + R * An)...));

:= Rl + (R2 + LONGEST-FLOAT(POLY)).

The coefficients are obtained from a Remez algorithm.

R

POLY

Q

Step 4. Each of the values 2J'/32, j = 0,1,... ,31, is calculated beforehand and repre-
sented by two LONGEST-FLOAT numbers

TW0_T0_J-BY_32(J,LEAD) and TW0_T0_J_BY_32(J, TRAIL).

The leading part has thirteen significant bits, and the trailing part has full preci-
sion. Thus the sum of the two represents 2J'/32 to roughly thirteen more bits than
LONGEST-FLOAT has in its mantissa. The reconstruction is as follows:

F

Ql

Q2

EXP

EXP

TW0_T0_J_BY_32(J,LEAD) + TW0_T0_J_BY_32(J, TRAIL)

TW0_T0_J_BY_32(J, LEAD)

TW0_T0.J_BY_32(J, TRAIL) + F * Q

2™ * (qi + Q2) for binary machines
N N

2 * Qi + 2 * Q2 for hexadecimal machines

6 Error Analysis with Ada's Model

The proposed specification for the exponential function EXP requires that

EXP(X) - ex

< 4 * FLOAT-TYPE'BASE'EPSILON

for most input values X. The analysis to follow will show that with moderate assump-
tions about the underlying floating-point arithmetic, the accuracy requirement is easily

10

achieved by our algorithm implemented as described. Since most systems perform arith-
metic more accurately than prescribed by Ada's model, our analysis will inevitably be
pessimistic. In Section 6.6, we will discuss accuracy in terms of machine precision.

Our goal in the analysis is to estimate, in terms of

FLOAT-TYPE' BASE 'EPSILON,

the final error in the implemented function. It is obvious that our implementation is
least accurate when

FLOAT-TYPE'BASE'EPSILON = LONGEST-FLOAT'EPSILON.

Thus, we will analyze this case only. Throughout the analysis, we will use e and radix to
denote 'EPSILON and 'MACHINE-RADIX of LONGEST-FLOAT, respectively, and "exponent
width" to denote the number of binary bits in the exponent field of its predefined floating
type. We find the following notation useful in error analysis:

• Typefaced letters, X, Y, P, Q, etc., denote real numbers that are representable
exactly in the machine.

• Angle brackets (• • •) denote the value of a real number "• • •" rounded to machine
precision. Thus, executing the statement

A:=B*C

in machine precision gives the value

A = (B-C).

• e denotes the value FLOAT-TYPE' BASE' EPSILON.

• Let ibea real number. We define £(x) to be the difference between the value of
x when rounded to working precision and x itself, thus:

£(*) := (x) ~ x-

• If one uses (•) and £(•), the relationship

(A op B) = A op B + f (A op B)

holds for any machine-precision values A and B and for each of the four basic
operations +, —, •, and /.

11

Given safe numbers A and B, and op in {+,-,-,/}, let k be the unique integer such
that

2*<|AopB|<2fc+1.

Then, with the notation just introduced, the Ada model guarantees that

|f (A op B)|<2fce.

We are now ready to perform the analysis.

6.1 Classification of Errors

We can classify the errors in our algorithm into three categories:

• Error in reduction. The computed reduced argument Rj + R2 differs from the cor-
rect one r defined by the equation

x = (32m + j) log 2/32 + r.

• Error in approximation. The approximating polynomial or rational function p(r)
differs from exp(r) — 1.

• Rounding errors. Errors will be committed as we compute p{r) and the final
reconstruction; such is the nature of finite-precision arithmetic on computers.

Our analysis treats each of the three categories of error independently before com-
bining them.

6.2 Error in Reduction

Let Ri,R2,N,Ni,N2,M, and J be the values as obtained in step 2 of the implementation.
We estimate the difference between the value Ri + R2 and the correct reduced argument
r, where

r = Y-N- log 2/32.

Several observations:

• Li,L2 are so chosen (see the source code for details) that

|Li + L2 - log2/32| < 2"10 • 2-
exP°nent wi<lth . e and

|L2| < 2~9 . 2-exPonent width

• Both NiLi and N2Li are safe numbers with at least one trailing zero. This is
because Li is a safe number with at least nine trailing zeros and both Nj and N2

never exceed eight bits by design.

12

• Consider the calculation of Ri:
TMP:=Ni*Li;
if |Y| > |TMP| then

Rl := Y - TMP;
otherwise,

Ri := (Y - TMP/2) - TMP/2;
ifN2^0, Ri :=Ri-N2*Li.

The crucial observation is that the calculations above are error free when performed
on any hexadecimal machine with a guard digit for subtraction, and on any binary
machines with or without a guard bit for subtraction. The reason is that both
NiLi and N2Li have at least one trailing zero bit, and cancellation occurs in each
of the subtractions above.

Using these observations, we can estimate the error in reduction as follows:

Now, because

therefore

Consequently,

R1+R2 = Y-(H.Li + <H-L2»

= Y-N(L1+L2) + e(N-L2).

|N| < |Y-32/log2|

< |LARGE_THRESH0LD-32/log2|

< |64 • 2exP°nent width-i. iog2(radix)|

< log2(radix).2exP°nentwidth+5,

|N-L2| <2 -6 and |f(N-L2)| < 2"7e.

|(Rl + R2) - (Y - N -log2/32)| < N • |Li + L2 -log2/32| + |£(N • L2)|

< 2-7eH
< 2~6e.

< 2_7e + 2_76

6.3 Error in Approximation

We estimate the difference between the transcendental function e* - 1 and the approxi-
mating polynomial

p(t) = t + kit2 + ■■■ + knt
n+1

for t £ [-log2/64,log2/64]. The estimation is done by locating numerically all the
extreme points of e' - 1 - p{t) in the interval [-0.010831,0.010831] (slightly wider than

13

[- log 2/64,log 2/64]). In our code, five different polynomials are used for different ranges
of FLOAT-TYPE'DIGITS. In each of those ranges, we find that

|e'-l-p(*)|<2-6€

for all t e [-0.010831,0.010831], where e corresponds to the maximum number of digits
in that particular range.

6.4 Rounding Errors

Here we are concerned with the difference between the value EXP obtained by executing

R

POLY

Q

F

Qi

Q2

EXP

EXP

= R1+R2

R * R * (At + R * (A2 + R * (... + R * An)...))

:= Ri + (R2 + LONGEST-FLOAT(POLY))

:= TW0_T0_J_BY_32(J, LEAD) + TW0_T0_J_BY_32(J, TRAIL)

= TW0.T0_J_BY_32(J,LEAD)

= TW0.T0_J_BY_32(J,TRAIL) + F*Q

:= 2^ * (Qi + Q2) for binary machines

2" * Qi + 2" * Q2 for hexadecimal machines

and the value we would have obtained had all the preceding calculations been error free.
Three observations simplify our analysis. First, on binary machines, the execution of

2M*(Qi + Q2)

and

2" * Qi + 2" * Q2

yields identical results. Second, the magnitude of POLY is at most |(log2/64)2, which
is less that 2-13. Thus the rounding errors accumulated in POLY are practically zero.
Third, 2* * Qj is exact because Qj is a safe number.

To shorten the exposition that follows, we use Si and S2 to denote

TW0_T0_J_BY_32(J,LEAD) and TW0_T0_J_BY_32(J, TRAIL),

respectively. We axe now ready to begin.

Using the observations and the notation, we are going to estimate the difference
between

(2" • Qi + (2" • (S2 + «Si + S2) • (Rj + (R2 + POLY))))))

and

2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))).

To obtain a good estimate, we must give a careful account for each deviation of our
computed value from the ideal one. We use E0 to denote the ideal result. Ex denotes

14

the first corrupted result, E2 the second, and so on. E7 is the final computed result, and
the rounding error is simply the difference EQ — E7.

E0

Ei

E2

E3

E4

E5

E6

E7

= 2* • Qi + (2* • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))))

= 2M • Qi + 2" • (S2 + (S! + S2) • (Ri + (R2 + POLY)))

= 2" • Qi + 2M • (S2 + (Si + S2) • (Ri + (R2 + POLY)))

= 2" • Qi + 2M • (S2 + (Si + S2) • (Ri + (R2 + POLY)))

= 2" • Qi + 2" • (S2 + ((Si + S2) • (Rt + (R2 + POLY))))

= 211 • Qi + 2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))

= 2" • qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))))

= (2M • Qi + (2* • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))))

We also name the following values by J\, F2,..., F7 because these values arise often
in what follows.

Fi

F2

F3

FA

F5

F6

F7

= R2 + POLY

= Ri + (R2 + P0LY)

= Si+S2

= (Si + S2) • (Ri + (R2 + POLY))

= S2 + ((Si + S2) • (Ri + (R2 + POLY)))

= 2M • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))

= 2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))))

Now the estimates:

and

|rounding errors| = |JE70 — E7\ <]jP |-E;-i — Ei\,
t'=i

|£0-£i| = 2vw|Si+S2|-|(R2+P0LY)-(R2 + P0LY)|

= 2M\F3\.\t(F1)\,

\E1-E2\ = 2M\F3\-\£(F2)\,

\E2-E3\ = 2M\(F2)\-\Z(F3)\,

\E3-E4\ = 2M|£(F4)|,

\E4-E5\

\E5 - E6\

\E6 - E7\

2M\ttFs%

15

To get an estimate of \{(Fj)\ for j = 1,..., 7, we need know only the rightmost binary
intervals in which the various |Fj|'s may lie. Note that each of the F/s is the computed
result of some value whose range is known. Consequently, unless the largest magnitude
achieved by those values lies very close to a power of 2, the rightmost binary intervals
in which those values may lie are the binary intervals we seek. We tabulate the results
below.

Value

IN
\p(r)\

|2i/32|

\y/32p(r)\

\S2 + 2^2p(r)\

2M|S2 + 2^32p(r)\

|2M2i/32er|

Thus, when j = 0,

|rounding error | <
<

When j = l,

|rounding error | <
<

Note also that

and

Range

[0,2-m78]
[0,2-6-52]
[0,231/32]

2J'/32[0,2-6-52]

2>'/32[0,2-6-49]

2M2J/32[0) 2-6.49]

2M2J/32r2-l/64 21/64]

Conclusion Drawn

l£(*i)| < 2-»£
M{Fi)\ < 2"76, \F2\ < 2"6-5

\{(F3)\ = 0 for j = 0;
l£(-^3)| < c otherwise.

I W)| < 2"7€ for j = 0;
\£(F4)\ < 2~6€ otherwise.

\t(F5)\ < 2~7€ for j = 0;
l£(*5)| < 2~6€ otherwise.

\t(Fa)\ <2M2~7e for j = 0;
\t(F6)\ < 2M2"6e otherwise.

\t(F7)\ < 2M~1e for 2'V3V < 1;
\£(F7)\ < 2Me otherwise.

\t(Fr)\ + 2M~l ■ e • (2-10 + 2"6 + 0 + 2"6 + 2"6 + 2"6),
\£(F7)\ + 2M~1 ■ e ■ 0.06348.

|£(F7)| + 2M • e • (2-10 + 2~6 + 2"65 + 2"6 + 2"6 + 2~6),
|e(F7)| + 2M ■ e • 0.07453.

eY = 2M-2J'/32.er,

|e(i?V)|/(2M.2^32.e'-) < e.

6.5 Overall Error

Finally, we estimate the overall relative error

|eY - (2" • Qi + (2* . (S2 + ((Sl + S2> • (Rl + <R2 + P0LY»»»| / e^

From the previous analysis,

16

I absolute error |
= |2M2''/3V - <2M • Q! + (2M • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))))

< 2M2J'/32 • \er - eRi+R21 + 2M2J'/32 • |eRl+R2 - 1 - p(Ri + R2)|
+ |2M2J'/32p(Ri + R2) + 2M2J'/32

-(2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + P0LY))))))|

< 2M2^32 (l.01|r - (Ri + R2)| + |eRi+R2 - 1 - pfa + R2)|)
+ |2M2^32KRl+R2) + 2M2J'/32

-(2" • Qi + (2" • (S2 + ((S! + S2) • (Ri + (R2 + P0LY))))))|
< 2M2J/32 (1.01|error in reduction| + |error in approximation!)

+ | rounding error |
< 2M2J/32(1.01 • 2~6 + 2~6)c + |rounding error|.

When j = 0, eY > 2M_1 and

|relative error|
< 2 (1.01 • 2~6 + 2~6) e + 0.06348c + (|f (F7)| / eY)

< 1.13e.

When j > 1, e1 > 2M and

| relative error |
< 231/32 (1.01 • 2"6 + 2"6) c + 0.07453e + (\Z(F7)\ / e

Y)

< 1.14c.

Thus, the relative error of the implementation stays well within the required threshold
of4e.

6.6 Remarks

On all Ada systems that we have experience with, the implementation is actually capable
of delivering comparable accuracy with respect to the precision offered by the underlying
hardware. Moreover, on machines such as the VAX or those with floating-point arith-
metic conforming to ANSI/IEEE Standard 754-1985, the previous analysis is pessimistic.
In particular, a similar implementation that is tailored specifically to IEEE 754 arith-
metic has been proved accurate to within 0.54 unit of last place. In a later paper, we
will analyze in detail the accuracy of our implementation on the various machines we
are interested in.

7 Test Results

The code as listed in the Appendix has been run on a Sequent VADS compiler version
5.41.6, an IBM PC/AT using the Meridian AdaVantage compiler version 2.0, and a VAX
8650 using DEC Ada version 1.4.

17

We have also tested the implementation on the Sequent and the IBM PC/AT using
the ELEFUNT test transcribed into Ada by K. W. Dritz.

On the Sequent, there are two predefined floating-point types with 24 and 53 signifi-
cant bits, 'digits 6 and 15, respectively. Thus the accuracies offered by the two sets of
safe numbers are 21 and 51 bits, respectively; and those offered by the two machine for-
mats are 24 and 53 bits, respectively. The ELEFUNT results are summarized as follows.
(For a description of the test, see [3].)

Generic Accuracy Reported Loss of Binary Bits
Actual Type with respect to Max. Relative Error Root Mean Square
'digits 6 21 bits 0.00 0.00
'digits 6 24 bits 0.99 0.00
'digits 15 51 bits 0.00 0.00
'digits 15 53 bits 0.99 0.00

On the IBM PC/AT with the Meridian AdaVantage, there is only one predefined
floating-point type with 53 significant bits, 'digits 15. Thus, the accuracies offered
by the safe numbers and the machine format are 51 bits and 53 bits, respectively. The
results are summarized as follows.

Generic
Actual Type
'digits 15
'digits 15

Accuracy
with respect to

51 bits
53 bits

Reported Loss of Binary Bits
Max. Relative Error

0.00
1.00

Root Mean Square
0.00
0.00

8 Conclusion and Future Work

We have shown that the environmental inquiries and other numerical features provided
by Ada make portability and provability of some numerical software possible. With
conscientious effort, a reasonably portable and accurate exponential function can be
implemented.

Our experience with the sample implementation presented here strongly suggests
that the following four projects are within reach. We are committed to the first two, and
we hope that circumstances will allow us to pursue the others.

• Specification of Elementary Functions: The sample implementation has pro-
vided us with valuable guidelines on proposing a specification for the elementary
function library. We will continue to participate in the formulation of the specifi-
cation.

• Library of Elementary Functions: A portable complete library of the twenty
elementary functions ([7] and [6]) can be implemented by using strategies similar
to those employed here. The only technical challenge we foresee now is an accurate
reduction routine that finds the remainder of a machine number with respect to
the transcendental number w.

18

• Library of Primitive Functions: We intend to construct a library of primitive
functions similar to those proposed in [6]. Since the functions here are of a much
lower level, a portable implementation may not be practical or even possible in
some cases. Some of the elementary functions may be constructed on top of this
basic library. (Our exponential function, though not dependent on this library, will
benefit from it.)

• Validation: From our experience so far, a portable test suite seems to be im-
plementable. The test suite we have in mind consists of two parts. The first part
basically will be a transcription of the ELEFUNT test in [3]. The ELEFUNT test
is adept in reporting possible mistakes and in estimating the accuracy of the func-
tion under test. The second part of the test will try to report the exact deviation of
the function under test from the correct value. In the past, such a task has usually
been performed only if higher-precision function values are available. With the
numerical features of Ada — for example, accurate conversion of universal reals to
model numbers, and table-driven techniques like those employed in our exponential
function — we believe such a task can be accomplished portably even without an
extra-precise function.

A test suite as such should also be useful in validating libraries that claim confor-
mance to the proposed specification.

Acknowledgments

The bulk of the work related to implementation was done by the author. Many of
the ideas on table-driven techniques were developed while the author worked under the
supervision of Professor W. Kahan of the University of California at Berkeley. Similar
table-driven implementations can also be found in [1] and [5]. This work has benefited
from valuable suggestions from W. J. Cody, K. W. Dritz, and B. T. Smith, who together
with the author are also actively working on the specification. The author also thanks
W. J. Cody for his many valuable suggestions concerning our implementation.

Different versions of the implementation were also tested by J. Squire at Westinghouse
and G. Hodgson at NAG.

19

Appendix

The following is the complete source program for the exponential program,

package MATHEMATICAL_EXCEPTIONS is

ARGUMENT_ERROR : exception;

end MATHEMATICAL_EXCEPTIOHS;

with MATHEMATICAL_EXCEPTIONS;

generic

type FLOAT_TYPE is digits <>;

package GENERIC_ELEMENTARY_FUNCTIONS is

function EXP(X : FLOATJTYPE) return FLOATJTYPE;

— other functions to be added later

ARGUMENT_ERROR : exception renames MATHEMATICAL_EXCEPTIONS.ARGUMENT_ERROR;

end GENERIC_ELEMENTARY_FUHCTIONS;

with SYSTEM;

with TEXT_IO; use TEXT_IO;

package body GENERIC_ELEMEHTARY_FUNCTIOHS is

As of 2/4/88, this package contains only the exponential
function. More functions will be added later.

~ FLOAT_TYPE is the floating-point type with which the user

~ instantiates this package. Computation in this type is

~ avoided to insulate ourselves from any possible range
constraints imported with the type.

~ Two floating-point types are defined in this package body:

~ LONGEST_FLOAT is the floating-point type having 'DIGITS equal to
— SYSTEM.MAXJDIGITS. This type is needed here to perform

— argument reductions and final reconstructions of elementary
-- function values in the maximum precision available.

20

— WORKIHG_FLOAT is the floating-point type in which the approximations

— for elementary functions are carried out. This type is so defined

— that
WORKING_FLOAT'DIGITS = FLOAT_TYPE'BASE'DIGITS

— on all the Ada systems we have experience with.

— However, there may be some (unknown to us) systems for which

WORKINGJFLOAT'DIGITS > FLOATJTYPE'BASE'DIGITS

— Thus, type WORKING.FLOAT has at least the precision of the base
— type of FLOATJTYPE, and usually it does not have excess precision.

— Assumptions:

— This package body is portable to a particular implementation only

— if the following assumptions are valid in that implementation:

— (1) 6 <= SYSTEM.MAX_DIGITS <= 33
— (2) The following assumptions are made on floating-point

arithmetic:

(a) Radix: The radix will be either 2 or 16.
(b) Exponent Width: We assume that the number of bits in

the exponent field of the floating-point format never

exceeds L/3, where L is the actual number of bits

in the mantissa of the machine.
(c) Arithmetic: Let A and B be two machine numbers

such that 2B >= A >= B. Then, cancellation occurs in
A - B. On binary machines, we assume that the
subtraction is exact whenever B has one (or more)
trailing zero bit(s). On nonbinary machines, we
assume that A - B is exact. This assumption requires
in particular that a guard digit be present in the

subtraction hardware for the nonbinary machines.

— If the assumptions (i) and (2a) are invalid, the predefined
— exception PROGRAM_ERROR will be raised.
— Some compilers could detect at compile time that it
— must always be raised at run time, thus calling attention to the

— violation of the assumptions at compile time.

type LONGEST_FLOAT is digits SYSTEM.MAX.DIGITS;
type LONGEST_INTEGER is range SYSTEM.MIN_INT..SYSTEM.MAX_INT;

type POSITION is (LEAD, TRAIL);
subtype INDEX is LONGEST_INTEGER range 0..31;

— The following tables of constants are needed by several of the elementary

21

functions.

-- TW0_T0_J_BY_32 is an array of 32 pairs of LONGEST_FLOAT numbers

— representing 2**(j/32) for j = 0, 1, 2, ..., 31. Each such value

-- is represented by LEAD + TRAIL. The leading parts contain 13 bits

— of information and are consequently model numbers as long as

~ SYSTEM.MAX_DIGITS is >= 4. The trailing parts contain roughly

— L0NGESTJFL0AT'MANTISSA bits of information, under the assumption

— that SYSTEM.MAX_DIGITS is <= 35. So, when the assumptions are met,
~ LEAD + TRAIL represents 2**(j/32) to roughly 13 extra bits.

TV0_T0

0 =>
1 =>

2 =>
3 =>

4 =>

5 =>

6 =>

7 =>
8 =>

9 =>

10 =>

11 =>

12 =>
13 =>
14 =>
15 =>
16 =>
17 =>
18 =>
19 =>
20 =>

21 =>
22 =>

23 =>
24 =>
25 =>

26 =>

27 =>
28 =>
29 =>
30 =>
31 =>

J_BY_32
(LEAD

(LEAD

(LEAD
(LEAD =:

(LEAD =

(LEAD =

(LEAD =

(LEAD =

(LEAD

(LEAD =

(LEAD

(LEAD =
(LEAD =
(LEAD
(LEAD
(LEAD
(LEAD
(LEAD
(LEAD
(LEAD

(LEAD
(LEAD

(LEAD
(LEAD
(LEAD

(LEAD

(LEAD

(LEAD

(LEAD
(LEAD
(LEAD
(LEAD

constant

•>16#1.000#,
•>16#1.059#,

>16#1.0B5#,
»16#1.113#,

>16#1.172#,

>16#1.1D4#,

=>16#1.238#,

>16#1.29E#,

>16#1.306#,

>16#1.371#,

>16#1.3DE#,

>16#1.44E#,

<>16#i.4BF#,
=>16#1.534#,
=>16#1.5AB#,
=>16#1.624#,
=>16#1.6A0#,
=>16#1.71F#,
=>16#1.7A1#,
=>16#1.825#,
=>16#1.8AC#,

=>16#1.937#,

=>16#1.9C4#,
=>16#1.A55#,
=>16#1.AE8#,

=>16#1.B7F#,

=>16#1.C19#,

=>16#1.CB7#,
=>16#1.D58#,
=>16#1.DFC#,
=>16#1.EA4#,
:>16#1.F50#,

array(

TRAIL
TRAIL

TRAIL
TRAIL

TRAIL

TRAIL

TRAIL

TRAIL

TRAIL

TRAIL

TRAIL

TRAIL

TRAIL
TRAIL
TRAIL
TRAIL
TRAIL
TRAIL
TRAIL
TRAIL

TRAIL
TRAIL

TRAIL

TRAIL
TRAIL

TRAIL

TRAIL

TRAIL

TRAIL
TRAIL
TRAIL
TRAIL

INDEX

=>16#0

=>16#0
=>16#0

=>16#0

=>16#0

=>16#0

=>16#0

=>16#0

=>16#0

=>16#0

=>16#0

=>16#0
=>16#0
=>16#0
=>16#0
=>16#0
=>16#0
=>16#0
=>16#0
=>16#0
=>16#0

=>16#0

=>16#0

=>16#0
=>16#0

=>16#0

=>16#0

=>16#0

=>16#0
=>16#0
=>16#0
=>16#0

, POSITION) of L0NGEST_FL0AT := (

.000000000000000000000000000000000#)

.000B0D31585743AE7C548EB68CA417FE5#)

.000586CF9890F6298B92B71842A983642#)

.00001D0125B50A4EBBF1AED9318CEAC5C#)

.000B83C7D517ADCDF7C8C50EB14A79203#)

.000873168B9AA7805B8028990F07A98B4#)

.0007A6E75623866C1FADB1C15CB593B03#)

.0009DF51FDEE12C25D15F5A24AA3BCA88#)

.000FE0A31B7152DE8D5A46305C85EDECB#)

.000A7373AA9CAA7145502F4547987E3E1#)

.000A64C12342235B41223E13D773FBA2C#)

.000086061892D03136F409DF019FBD4F3#)

.000DAD5362A271D4397AFEC42E20E0363#)

.0002B569D4F81DF0A83C49D86A63F4E67#)

.00007DD48542958C93015191EB345D88D#)

.0007EB03A5584B1F0FA06FD2DA42BB1CE#)

.0009E667F3BCC908B2FB1366EA957D3E3#)

.O0075E8EC5F73DD2370F2EF0ACD6CB434#)

.0001473EB0186D7D51023F6CDA1F5EF42#)

.00089994CCE128ACF88AFAB34A010F6AD#)

.000E5422AA0DB5BA7C55A192C9BB3E6ED#)

.00037B0CDC5E4F4501C3F2540A22D2FC4#)

.0009182A3F0901C7C46B071F2BE58DDAD#)

.00003B23E255C8B424491CAF87BC8050A#)

.0009F995AD3AD5E8734D1773205A7FBC3#)

.00076F2FB5E46EAA7B081AB53C5354C88#)

.0009BDD85529C2220CB12A091BA667944#)

.00020DCEF90691503CBD1E949DB761D95#)

.00018DCFBA48725DA05AEB66E0DCA9F58#)

.00097337B9B5EB968CAC39ED291B7225A#)

.000AFA2A490D9858F73A18F5DB301F86D#)

.000765B6E4540674F84B762862BAFF98F#));

~ SCALE is a primitive function that returns a value scaled by a
~ specified power of two. The following implementation of

22

— SCALE is temporary, awaiting a package (possibly nonportable)

— of primitive functions implemented in the most effective way

— possible for a given machine.

function SCALE (X : LONGEST_FLOAT; M : LONGEST.INTEGER)

return LONGEST_FLOAT is

FACTOR : LONGEST_FLOAT;

POWERS : LONGEST_FLOAT := 1.0;
MULTIPLIER : L0HGEST_FL0AT := 1.0;

I, J : LOHGEST_INTEGER;

begin

if M > 0 then
FACTOR := 2.0;

I := M;

else

FACTOR := 0.5;

I := -M;
end if;
POWERS := FACTOR;
while I >= 2 loop

J := I mod 2;
I := I / 2;
if J = 1 then
MULTIPLIER := MULTIPLIER * POWERS;

end if;
POWERS := POWERS * POWERS;

end loop;
if M /= 0 then

MULTIPLIER := MULTIPLIER * POWERS;

end if;
return (MULTIPLIER*X);

end SCALE;

function EXP(X : FLOAT_TYPE) return FLOAT.TYPE is separate;

— other functions to be added later

end GENERIC_ELEMENTARY_FUNCTIONS;

separate (GENERIC_ELEMEKTARY_FUNCTIOHS)

function EXP(X : FLOATJTYPE) return FLOAT_TYPE is

23

RESULT : FLOATJTYPE;
L0G2_BY_32_LEAD, L0G2_BY_32_TRAIL, F,

Y, Rl, R2, q, TMP : LONGEST_FLOAT;
TW0_T0_6 : constant := 64;
TW0_T0_8 : constant := 256;
L0G2_BY_32 : constant :=

16#5.8B90B_FBE8E_7BCD5_E4FlD_9CC01_F97B5_7A079_A1933_94C#E-2;
THIRTY_TW0_BY_L0G2 : constant :=

16#2E.2A8EC_A5705_FC2EE_FA1FF_B41A4_74FA2_3AD5E#;
LARGE_THRESHOLD : LOHGEST_FLOAT :=

2.0 * LONGEST_FLOAT(FLOAT_TYPE'SAFE_EMAX) * 6.931471806E-1;
SMALL_THRESHOLD : L0NGEST_FL0AT :=

FLOATJTYPE'BASE'EPSILOH;

I, M, H_l, H_2, M, J : LONGEST.INTEGER;

begin

— Step 1. Filter out exceptional cases.

Y := L0NGEST_FL0AT(X);
if abs(Y) >= LARGEJTHRESHOLD then

raise ARGUMENT_ERROR;
elsif abs(Y) <= SMALL JTHRESHOLD then

return(FLOATJTYPE(1.0 + Y));
end if;

Step 2. Reduce the argument.

To perform argument reduction, we find the integer H such that
X = H * log2/32 + remainder, |remainderI <= log2/64.

I is defined by round-to-nearest-integer(X*32/log2) and
remainder by X - H*log2/32. The calculation of H is
straightforward whereas the computation of X - H*log2/32
must be carried out carefully.
log2/32 is so represented in two pieces that
(1) log2/32 is known to extra precision, (2) the product
of H and the leading piece is a model number and is hence
calculated without error, and (3) the subtraction of the value
obtained in (2) from X is a model number and is hence again obtained
without error.

The following case analysis chooses the appropriate
representation of log2/32, depending on the number of
digits in L0NGEST_FL0AT.

\

24

case SYSTEM.MAX_DIGITS is

when 6 =>

L0G2_BY_32_LEAD := 16#5.8B8#E-2; —12 bits

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B8#E-2;

when 7.-8 =>

L0G2_BY_32_LEAD := 16#5.8B9#E-2; —15 bits

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B9#E-2;

when 9..11 =>

L0G2_BY_32_LEAD := 16#5.8B908#E-2; —17 bits
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B908#E-2;

when 12..14 =>

L0G2_BY_32_LEAD := 16#5.8B90A#E-2; —22 bits
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90A#E-2;

when 15..19 =>

L0G2_BY_32_LEAD := 16#5.8B90B_F8#E-2; —28 bits
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_F8#E-2;

when 20..27 =>

L0G2_BY_32_LEAD := 16#5.8B90B_FBE8#E-2; —37 bits

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_FBE8#E-2;

when 28..33 =>

L0G2_BY_32_LEAD := 16#5.8B90B_FBE8E_7A#E-2; —50 bits
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_FBE8E_7A#E-2;

when others =>

raise PR0GRAM_ERR0R; — assumption (1) is violated.

end case;

— Perform argument reduction in L0NGEST_FL0AT.

H := LONGEST_IHTEGER(Y * THIRTY_TW0_BY_L0G2);

if abs(K) >= TW0_T0_8 then
H_2 := M mod TW0_T0_6;

25

H_i := H - H_2;
else

H_2 := 0;
M_l := H;

end if;
TMP := L0NGEST_FL0AT(I_l) * L0G2_BY_32_LEAD;
if abs(Y) >= abs(TMP) then

Rl := Y - TMP;
else

TMP := 0.5 * TMP;
Ri := (Y - TMP) - TMP;

end if;
if H_2 /= 0 then

Rl := Rl - L0HGEST_FL0AT(N_2) * L0G2_BY_32_LEAD;
end if;
R2 := -L0HGEST_FL0AT(N) * L0G2_BY_32_TRAIL;
J := H mod 32;
M := (H - J)/32;

-
— Step 3. Approximation.

— The following is the core approximation. We approximate
— exp(Rl+R2)-l by a polynomial. The case analysis finds both
— a suitable floating-point type (less expensive to use than
— L0HGEST_FL0AT) and an appropriate polynomial approximation
— that will deliver a result accurate enough with respect to
— FLOATJTYPE'BASE'DIGITS. Note that the upper bounds of the
— cases below (6, 15, 16, 18, 27, and 33) are attributes
— of predefined floating types of common systems.

case FLOATJTYPE'BASE'DIGITS is

when 1..6 =>

declare
type W0RKIHG_FL0AT is digits 6;
R, POLY : W0RKING_FL0AT;

begin
R := W0RKING_FL0AT(Rl + R2);
POLY := R*R*(5.00004_0481E-01 + R * i.66667_6443E-01);
Q := Rl + (R2 + L0NGEST_FL0AT(POLY));

end;

when 7.. 15 =>

declare
type W0RKING_FL0AT is digits

(15+SYSTEM.MAX_DIGITS - abs(15-SYSTEM.MAX_DIGITS))/2;

26

~ this is min(15, SYSTEM.MAX_DIGITS)

R, POLY : WORKING.FLOAT;

begin
R := WORKING_FLOAT(Ri + R2);
POLY := R*R*(5.00000_00000_00000_08883E-01 +

R*(i.66666_66666_52608_78863E-01 +
R*(4.16666_66666_22607_95726E-02 +

R*(8.33336_79843_42196_16221E-03 +

R*(1.38889_49086_37771_99667E-03)))));

Q := Rl + (R2 + LOHGEST_FLOAT(POLY));

end;

when 16 =>

declare
type WORKING_FLOAT is digits

(16+SYSTEM.MAX_DIGITS - abs(16-SYSTEM.MAX_DIGITS))/2;

R, POLY : WORKING_FLOAT;

begin
R := WORKING_FLOAT(Rl + R2);
POLY := R*R*(5.00000_00000_00000_08883E-01 +

R*(1.66666_66666_52608_78863E-01 +

R*(4.16666_66666_22607_95726E-02 +
R*(8.33336_79843_42196_16221E-03 +
R*(1.38889_49086_37771_99667E-03)))));

Q := Rl + (R2 + LONGEST_FLOAT(POLY));

end;

when 17..18 =>

declare
type WORKING_FLOAT is digits

(18+SYSTEM.MAX_DIGITS - abs(18-SYSTEM.MAX_DIGITS))/2;

R, POLY : WORKIHG_FLOAT;

begin
R := WORKING_FLOAT(Rl + R2);
POLY := R*R*(5.00000_00000_00000_07339E-01 +

R*(1.66666_66666_66666_69177E-01 +

R*(4.16666_66666_28680_32559E-02 +
R*(8.33333_33332_52083_91118E-03 +

R*(1.38889_44766_51246_30293E-03 +
R*(1.98413_53190_32208_33704E-04))))));

Q := Rl + (R2 + LONGEST_FLOAT(POLY));

end;

when 19..27 =>

declare

27

I

POLY R*R*(
R*(
R*(
R*(
R*(
R*(
R*(
R*(

q := Rl + (R
end;

type WORKIHG_FLOAT is digits

(27+SYSTEM.MAX_DIGITS - abs(27-SYSTEM.MAX_DIGITS))/2;
R, POLY : WORKING_FLOAT;

begin

R := WORKIHG_FLOAT(Rl + R2);

4.99999_99999_99999_99999_99636_21075E-0i +

1.66666_66666_66666_66666_66512_04136E-01 +

4.16666_66666_66666_69681_E9325_03184E-02 +

8.33333_33333_33333_40906_33326_46233E-03 +
1.38888_88888_81124_92492_26093_01620E-03 +

1.98412_69841_13983_54303_S9568_15543E-04 +
2.48016_66086_20855_39725_92760_S6125E-05 +
2.75574_13983_51388_82843 29291 74995E-06

))))))));
2 + LOHGEST_FLOAT(POLY));

«hen 28..33 =>

declare

type WORKIHG_FLOAT is digits

(33+SYSTEM.MAX_DIGITS - abs(33-SYSTEM.MAX_DIGITS))/2;
R, POLY : WORKIHG_FLOAT;

begin

R := VORKIHG_FLOAT(Rl + R2);
POLY := R*R*(5.0E-01 +

R*(i.66666_66666_66666_66666_66666_66668_18891E-01 +
R*(4.16666_66666_66666_66666_66666_66671_98062E-02 +
R*(8.33333_33333_33333_33333_33182_72433_96473E-03 +
R*(1.38888_88888_88888_88888_88860_77788_96115E-03 +
R*(1.98412_69841_26984_13216_98830_39302_820E-04 +
R*(2.48015_87301_58730_16549_32617_44006_810E-05 +
R*(2.7B573_19223_90497_50521_23337_44713_411E-06 +

R*(2.7S573_19223_90383_09381_24531_22474_208E-07 +

R*(2.50521_67036_89710_14700_24557_88635_351E-08 +
R*(2.08768_06002_87469_73970 46716 40247 S97E-09

)))))))))));
q := Rl + (R2 + LONGEST_FLOAT(POLY));

end;

when others =>

raise PR0GRAM_ERR0R; — assumption (1) is violated,

end case;

— This completes the core approximation.

28

J

— Step 4. Function value reconstruction.

— We now reconstruct the exponential of the input argument.
— The order of the computation below must be strictly observed.

F := TW0_T0_J_BY_32(J, LEAD) + TW0_T0_J_BY_32(J, TRAIL);

case LONGEST_FLOAT'MACHINE_RADIX is

when 2 =>

Y := TW0_T0_J_BY_32(J, LEAD) +
(TW0_T0_J_BY_32(J, TRAIL) + F*Q);

RESULT := FLOAT_TYPE(SCALE(Y, M));

when 16 =>

Y := SCALE(TW0_T0_J_BY_32(J, LEAD), M) +
SCALE(TW0_T0_J_BY_32(J, TRAIL) + F*q, M);

RESULT := FLOAT_TYPE(Y);

when others =>

raise PROGRAM_ERROR; — assumption (1) is violated,

end case;

if RESULT /= 0.0 then
return(RESULT);

else
raise ARGUMENT_ERR0R;

end if;

exception

when NUMERIC_ERR0R I CONSTRAINT.ERROR =>

raise ARGUMENT.ERROR;
— This handling may be changed in the future. For one
— thing, overflowing the constraints of the base type

— of FLOAT_TYPE and overflowing the constraints of
— FL0AT_TYPE are indistinguishable in the way exception

— is handled now.

end EXP;

29

References

[1] R. C. Agarwal et al., New scalar and vector elementary functions for the IBM
System/370, IBM Journal of Research and Development, 30, no. 2, March 1986, pp.
126-144.

[2] W. S. Brown and S. I. Feldman, Environment parameters and basic functions for
floating-point computation, A CM Transactions on Mathematical Software, 6, no. 4,
December 1980, pp. 510-523.

[3] W. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice-
Hall, Englewood Cuffs, N.J., 1980.

[4] J. Hart et al., Computer Approximations, John Wiley and Sons, N.Y., 1968.

[5] Elementary Math Library, Programming RPQ P81005, Program Number 5799-
BTB, Program Reference and Operations Manual, August 1984, SH20-2230-1.

[6] J. Kok, Proposal for standard mathematical packages in Ada, Report NM-R8718,
Center for Mathematics and Computer Science, Amsterdam, The Netherlands,
November 1987.

[7] R. F. Mathis, Elementary Functions Package for Ada, Proceedings for ACM SIGAda
International Conference, Boston, Massachusetts, December 1987.

30

r
Internal:

Distribution for ANL-88-3

J. M. Beumer (3)
W. J. Cody
K. W. Dritz
F. Y. Fradin
H. G. Kaper
A. B. Krisciunas
G. W. Pieper (50)
B. T. Smith
P. Tang (30)

ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (3)

External:

DOE-TIC, for distribution per UC-32 (112)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. L. Bona, Pennsylvania State University
T. L. Brown, University of Illinois, Urbana
P. Concus, Lawrence Berkeley Laboratory
S. Gerhart, Micro Electronics and Computer Technology Corp., Austin, TX
H. B. Keller, California Institute of Technology
J. A. Nohel, University of Wisconsin, Madison
M. J. O'Donnell, University of Chicago

Capt. David Hart, Office of the Secretary of Defense
Capt. Stephen Johnson, Office of the Secretary of Defense
G. Michael, Lawrence Livermore Laboratory
Lt. Col. Jon Rindt, Office of the Secretary of Defense
Lt. Col. Peter Sowa, Office of the Secreteary of Defense

31

